darinilai cos a = 4/5 ketemu sin a = 3/5 tan a = 3/4 dari nilai sin b = 5/13 ketemu cos
Sina Sinb is an important formula in trigonometry that is used to simplify various problems in trigonometry. Sina Sinb formula can be derived using addition and subtraction formulas of the cosine function. It is used to find the product of the sine function for angles a and b. The result of sina sinb formula is given as 1/2[cosa - b - cosa + b]. Let us understand the sin a sin b formula and its derivation in detail in the following sections along with its application in solving various mathematical problems. 1. What is Sina Sinb in Trigonometry? 2. Sina Sinb Formula 3. Proof of Sina Sinb Formula 4. How to Apply Sina Sinb Formula? 5. FAQs on Sina Sinb What is Sina Sinb in Trigonometry? Sina Sinb is the trigonometry identity for two different angles whose sum and difference are known. It is applied when either the two angles a and b are known or when the sum and difference of angles are known. It can be derived using angle sum and difference identities of the cosine function cos a + b and cos a - b trigonometry identities which are some of the important trigonometric identities. Sina Sinb formula is used to determine the product of sine function for angles a and b separately. The sina sinb formula is half the difference of the cosines of the difference and sum of the angles a and b, that is, sina sinb = 1/2[cosa - b - cosa + b]. Sina Sinb Formula The sina sinb product to difference formula in trigonometry for angles a and b is given as, sina sinb = 1/2[cosa - b - cosa + b]. Here, a and b are angles, and a + b and a - b are their compound angles. Sina Sinb formula is used when either angles a and b are given or their sum and difference are given. Proof of Sina Sinb Formula Now, that we know the sina sinb formula, we will now derive the formula using angle sum and difference identities of the cosine function. The trigonometric identities which we will use to derive the sin a sin b formula are cos a + b = cos a cos b - sin a sin b - 1 cos a - b = cos a cos b + sin a sin b - 2 Subtracting equation 1 from 2, we have cos a - b - cos a + b = cos a cos b + sin a sin b - cos a cos b - sin a sin b ⇒ cos a - b - cos a + b = cos a cos b + sin a sin b - cos a cos b + sin a sin b ⇒ cos a - b - cos a + b = cos a cos b - cos a cos b + sin a sin b + sin a sin b ⇒ cos a - b - cos a + b = sin a sin b + sin a sin b [The term cos a cos b got cancelled because of opposite signs] ⇒ cos a - b - cos a + b = 2 sin a sin b ⇒ sin a sin b = 1/2[cos a - b - cos a + b] Hence the sina sinb formula has been derived. Thus, sina sinb = 1/2[cosa - b - cosa + b] How to Apply Sina Sinb Formula? Next, we will understand the application of sina sinb formula in solving various problems since we have derived the formula. The sin a sin b identity can be used to solve simple trigonometric problems and complex integration problems. Let us go through some examples to understand the concept clearly and follow the steps given below to learn to apply sin a sin b identity Example 1 Express sin x sin 7x as a difference of the cosine function using sina sinb formula. Step 1 We know that sin a sin b = 1/2[cosa - b - cosa + b]. Identify a and b in the given expression. Here a = x, b = 7x. Using the above formula, we will proceed to the second step. Step 2 Substitute the values of a and b in the formula. sin x sin 7x = 1/2[cos x - 7x - cos x + 7x] ⇒ sin x sin 7x = 1/2[cos -6x - cos 8x] ⇒ sin x sin 7x = 1/2 cos 6x - 1/2 cos 8x [Because cos-a = cos a] Hence, sin x sin 7x can be expressed as 1/2 cos 6x - 1/2 cos 8x as a difference of the cosine function. Example 2 Solve the integral ∫ sin 2x sin 5x dx. To solve the integral ∫ sin 2x sin 5x dx, we will use the sin a sin b formula. Step 1 We know that sin a sin b = 1/2[cosa - b - cosa + b] Identify a and b in the given expression. Here a = 2x, b = 5x. Using the above formula, we have Step 2 Substitute the values of a and b in the formula and solve the integral. sin 2x sin 5x = 1/2[cos 2x - 5x - cos 2x + 5x] ⇒ sin 2x sin 5x = 1/2[cos -3x - cos 7x] ⇒ sin 2x sin 5x = 1/2cos 3x - 1/2cos 7x [Because cos-a = cos a] Step 3 Now, substitute sin 2x sin 5x = 1/2cos 3x - 1/2cos 7x into the intergral ∫ sin 2x sin 5x dx. We will use the integral formula of the cosine function ∫ cos x = sin x + C ∫ sin 2x sin 5x dx = ∫ [1/2cos 3x - 1/2cos 7x] dx ⇒ ∫ sin 2x sin 5x dx = 1/2 ∫ cos 3x dx - 1/2 ∫ cos 7x dx ⇒ ∫ sin 2x sin 5x dx = 1/2 [sin 3x]/3 - 1/2 [sin 7x]/7 + C ⇒ ∫ sin 2x sin 5x dx = 1/6 sin 3x - 1/14 sin 7x + C Hence, the integral ∫ sin 2x sin 5x dx = 1/6 sin 3x - 1/14 sin 7x + C using the sin a sin b formula. Important Notes on sina sinb Formula sin a sin b is applied when either the two angles a and b are known or when the sum and difference of angles are known. sin a sin b = 1/2[cosa - b - cosa + b] It can be derived using angle sum and difference identities of the cosine function Topics Related to sina sinb cos a cos b cos 2pi cos a - b FAQs on Sina Sinb What is Sina Sinb Formula in Trigonometry? Sina Sinb is an important formula in trigonometry that is used to simplify various problems in trigonometry. The sin a sin b formula is sin a sin b = 1/2[cosa - b - cosa + b]. What is the Formula of 2 Sina sinb? We know that sina sinb = 1/2[cosa - b - cosa + b] ⇒ 2 sin a sin b = cosa - b - cosa + b. Hence the formula of 2 sin a sin b is cosa - b - cosa + b. How to Prove sina sinb Identity? The trigonometric identities which are used to derive the sina sinb formula are cos a + b = cos a cos b - sin a sin b cos a - b = cos a cos b + sin a sin b Subtract the above two equations and simplify to derive the sin a sin b identity. What is the Expansion of Sina Sinb in Trigonometry? The sina sinb expansion formula in trigonometry for angles a and b is given as, sin a sin b = 1/2[cosa - b - cosa + b]. Here, a and b are angles, and a + b and a - b are their compound angles. How to Apply Sina Sinb Formula? The sina sinb identity can be used to solve simple trigonometric problems and complex integration problems. The formula for sin a sin b can be applied in terms of cos a - b and cos a + b to solve various problems. How to Use sina sinb Identity in Trigonometry? To use sin a sin b formula, compare the given expression with the formula sin a sin b = 1/2[cosa - b - cosa + b] and substitute the corresponding values of angles a and b to solve the problem.
1+ tan a tan b rumus perkalian 2 cos a . cos b = cos (a+b) + cos (a-b) 2 sin a . sin b = cos (a-b) - cos (a+b) 2 sin a . cos b = sin (a+b) + sin (a-b) 2 cos a . sin b = sin (a+b) - sin (a-b) Diposting oleh Unknown di 16.57 Tidak ada komentar: Kirimkan Ini lewat Email BlogThis! Berbagi ke Twitter Berbagi ke Facebook Bagikan ke Pinterest.
Rumus-Rumus Trigonometri – Dulu kami pernah membuat postingan tentang rumus trigonometri SMA seperti trigonometri sudut ganda, selisih sudut, dan penjumlahan sudut. Kali ini kita akan belajar mengingat kembali apa itu trigonometri dan rumus aturan apa saja yang ada di dalamnya. Buat sebagian sobat hitung di rumah, trigonometri mungkin jadi materi dalam kategori susah dan ngga begitu disukai. Ah, kadang kita tida begitu serius PDKTnya, sehingga kita ngga begitu terasa rasa sukanya. Buat menambah PDKT kita tidak ada salahnya kita simak takjim sajian berikut. Apa itu Trigonometri Kalau sobat ditanya apa itu trigonometri kira-kira mau menjawab apa hayooo. Sobat, ternyata trigonometri berasal dari bahasa yunani “trigonon” yang bermakna segitiga dan “metron” yang berarti pengukuran. Trigonometri muncul di awal abad ke-3 masehi. Ia adalah salah satu cabang dari ilmu hitung matematika yang mempelajari segitiga meliputi semua aturan dalam penghitungan yang melibatkan sisi dan sudut dalam segitiga. Trigonometri terdiri dari sinus sin, cosinus cos, tangen tan, cotangen cot, secan sec, dan cosecan cosec. Untuk lebih memahami definisi trigonometri yuk simak gambar segitiga di bawah ini. Rumus Trigonometri Keterangan Sin α = b/c sisi depan dibagi sisi miring Cos α = a/c sisi samping dibagi sisi miring Tan α = b/a sisi depan dibagi sisi samping Cot α = a/b sisi samping dibagi sisi depan kebalikan dari tangen Sec α = c/a sisi miring dibagi sisi samping kebalikan dari cos Cosec α = c/b sisi miring dibagi sisi depan kebalikan dari sin Nilai Trigonometri Sudut-Sudut Istimewa Dalam trigonometri ada lima kaya poweranger sudut yang disebut sebagai sudut istimewa yaitu 0o, 30o, 45o, 60o, dan 60o. Penting bagi kita untuk mengetahui besarnya nilai trigonometri sudut-sudut tersebut karena rajin sekali muncul dalam soal ulangan atau ujian nasional. Rangkuman lengkap tentang nilai trigonometri dari sudut tersebut bisa di baca di tabel trigonometri sudut istimewa. Rumus-Rumus Identitas Trigonometri Nah ada istilah baru lagi ni, “identitas trigonometri”. Apa coba itu? Identitas trigonometri adalah sifat unik yang hanya dimiliki oleh trigonometri seperti sifat anomali pada air. Sifat itu hanya miliknya. Kalau dikelompokkan, sifat identitas ini bisa di bagi menjadi 3 kelas. Kelas yang pertama adalah identitas pebandingan, kelas kedua identitas kebalikan, dan yang terakhir identitas phytagoras. Berikur rumus trigonometri tersebut Relasi Sudut dalam Trigonometri Dalam trigonometri, ada relasi atar sudut-sudut. Sudut-sudut di kuadran II 90o-180o, kuadran III 180o-270o dan kuadran IV 270o-360o punya relasi dengan sudut-sudut di kuadran I 0o-90o. Berikut rumus-rumus sudut berelasi dalam trigonometri berikut trik untuk menghapalnya. 1. 180o – α –> Kuadran II sin 180o – α = sin α cos 180o – α = -cosα tan 180o – α = sin α 6. 90o – α –> Kuadran I sin 90o – α = cos α cos 90o – α = sin α tan 90o – α = cot α 2. 180o + α –> Kuadran III sin 180o + α = -sin α cos 180o + α = -cosα tan 180o + α = sin α 7. 90o + α –> Kuadran II sin 90o + α = cos α cos 90o + α = -sin α tan 90o + α = -cot α 3. 360o – α –> Kuadran IV sin 360o – α = -sin α cos 360o – α = cosα tan 360o – α = -sin α 8. 270o – α –> Kuadran III sin 270o – α = -cos α cos 270o – α = -sin α tan 270o – α = cot α 4. 360o + α –> Kuadran I sin 360o + α = sin α cos 360o + α = cosα tan 360o + α = sin α 9. 270o + α –> Kuadran IV sin 270o + α = -cos α cos 270o + α = sin α tan 270o + α = -cot α 5. untuk sudut -α –> Kuadran IV sin -α = -sin α cos -α = cosα tan -α = -sin α Rumus Cepat Rumus Cepat Pola lihat di kanan tanda = Sin → SinCos → CosTan → Tan Pola lihat di kanan tanda = Sin → CosCos → SinTan → Cot Penentuan +/- dilihat dari Kuadran, aturannya yang POSITIFKuadran I = All semuaKuadran II = hanya SIN Kuadran III = hanya TAN Kuadran IV = hanya COS sobat bisa mengingatnya ALL SIN TAN COS Jadi yang perlu sobat lakukan adalah menghafal pola dari sudut istimewa yang kelipatan 180o dan 90o kemudian tentukan hasilnya apakah positif atau negatif dengan menggunkan aturan ALL SIN TAN COS. Contoh soalnya seperti berikut Sobat ditanya berapa nilai sin 120o? sobat dapat menggunakan trik rumus trigonometri di atas. Cara I ingat, 120 = 90 + 30, jadi sin 120o dapat dihitung dengan Sin 120o = Sin 90o + 30o = Cos 30o nilainya positif karena soalnya adalah sin 120o, di kuadran 2, maka hasilnya positif Cos 30o = ½ √3 Cara II sobat bisa juga menggunakan rumus lain untuk soal trigonometri tersebut, 120o nilanya juga sama seperti 180o-80o. Sin 120o = Sin 180o – 60o = sin 60o = ½ √3 sama kan sobat hasilnya, hehehe 😀 Demikian sobat sajian kami tentang rumus trigonometri. Semoga bermanfaat. Untuk materi trigonometeri yang lain seperti grafik dan fungsi trigonometri dan pengukuran sudut akan kita sambung di postingan berikutnya. Selamat belajar. Buat orang tuamu bangga… 😀 RumusSin Cos Tan (Kemdikbud) Advertisement. Masing-masing sudut pada titik B bisa diukur menggunakan sin cos tan jika diketahui masing-masing sisinya. Tan merupakan hasil dari perbandingan sin dan cos, di mana bisa dirumuskan dengan tan = sin/cos. Untuk mengetahui nilai sin cos tan, umumnya menggunakan tabel trigonometri yang diperoleh dari
Hallo Gangs Apa kabar? Semoga kita semua selalu ada dalam lindungan-Nya. Amin. Pada kesempatan kali ini kita akan belajar tentang rumus sinus, kosinus dan tangen. Kita tidak akan sekedar mengetahui rumus-rumusnya namun kita juga akan melatih kemampuan otak kita dengan contoh-contoh soal yang akan di berikan. Okeee Gengs langsung saja yaaa Sebelum kita melangkah pada latihan soal, akan diberikan beberapa rumus yang akan kita gunakan untuk menjawab soal-soal. Perhatikan aturan-aturan berikut ini Aturan Sinus Aturan Cosinus Aturan trigonometri pada segitiga Nahhhhhh sekarang kita akan masuk pada latihan soal!!! CONTOH 1 Soal Pada △ABC diketahui bahwa sudut A = 30°, a = 6 dan b = 10. Tentukanlah nilai dari Sin B. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Rumus di atas bisa kita tuliskan ke dalam a sin⁡ B = b sin ⁡A 6 sin B = 10 sin 30° 6 sin B = 10 x ½ sin B = 5/6 CONTOH 2 Soal Pada segitiga PQR diketahui besar sudut P = 60°, sudut R = 45° dan panjang p = 8√3. Tentukanlah panjang sisi r. Jawab Dengan menggunakan aturan sinus. Akan di peroleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut p sin R = r sin P 8√3 sin 45° = r sin 60° 8√3 x 1/2√2 = r 1/2√3 4√6 = r x 1/2√3 r = 4√6 ÷ ½√3 = 8√2 CONTOH 3 Soal Apabila diketahi △ABC dimana sudut A = 75°, sudut B = 60° dan panjang sisi c = 20. Tentukan panjang sisi b. Jawab Sebelumnya, apabila kita perhatikan baik-baik soal di atas dimana sudut yang diketahui adalah A dan B sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang ditannyaka. Dari penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut C-nya. besar sudut C = 180° – [75°+ 60°] = 45° Nahhhhhh setelah kita tentukan besar sudut C maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 20 sin 60° b ½ √2 = 20. ½√3 b ½ √2 = 10 √3 b = 10 √3 ÷ ½ √2 = 10√6 CONTOH 4 Soal Apabila diketahui suatu △ABC memiliki panjang sisi a = 12, besar sudut A = 60° dan sudut C = 45°, maka berapakah panjang sisi c? Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin C = c sin A 12 sin 45° = c sin 60° 12 x ½√2 = c x ½√3 6√2 = c x ½√3 c = 6√2 ÷ ½√3 = 4√6 CONTOH 5 Soal Jika diketahui suatu △ABC memiliki panjang sisi c = 12√2cm, besar sudut A = 105° dan besar sudut C = 45°, maka berapakah panjang sisi b? Jawab Pada soal nomor 5 ini kasusnya sama dengan soal nomo 3 dimana sudut yang diketahui adalah A dan C sedangkan panjang sisi yang diketahui adalah c dan b adalah panjang sisi yang penjelasan ini, kita tidak akan menemukan suatu rumus yang mengikuti aturan sinus. Oleh karena itu, kita harus menentukan besar sudut B-nya, sebagai berikut ini. besar sudut B = 180° – [105° + 45°] = 30° Nahhhhhh setelah kita tentukan besar sudut B maka dengan mudah kita dapat tentukan aturan sinus yang akan kita gunakan untuk mengerjakan soal ini sebagai berikut. Sehingga dapat kita kerjakan sebagai berikut b sin C = c sin B b sin 45° = 12√2 sin 60° b x ½√2 = 12√2 x ½√3 b x ½√2 = 6√6 b = 12√3 CONTOH 6 Soal Tentukan panjang sisi b apabila diketahui besar sudut A = 60°, besar sudut B = 45° dan panjang sisi a = 6√3 pada △ABC. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 6√3 x sin 45° = b sin 60° 6√3 x ½√2 = b x ½√3 3√6 = b x ½√3 b = 3√6 ÷ ½√3 = 6√2 CONTOH 7 Soal Tentukan △ABC dengan panjang sisi a = 4, b = 10 dan sin B = ½. Berapakah nilai dari cos A. Jawab Dengan menggunakan aturan sinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut a sin B = b sin A 4 ½ = 10 sin A 2 = 10 sin A sin A = 2/10 = ⅕ karena yang ditanyakan adalah cos A maka kita akan mencarinya dengan berpatokan pada nilai sin A yang telah kita peroleh, sebagai berikut cos² A = 1 – sin² A = 1 – ⅕² = 24/25 cos A = ⅖√6 CONTOH 8 Soal Sebuah △ABC memiliki panjang c = 4 , a = 6 dan b = 8 . Tentukan nilai dari cos C. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos C = [a² + b² – c² ] ÷ [ = [6² + 8² – 4² ] ÷ = [36 + 64 – 16 ] ÷ 96 = 84 ÷ 96 CONTOH 9 Soal Sebuah △ABC memiliki panjang sisi a = 3, c = 8 dan besar sudut B = 60°. Tentukan panjang sisi b. Jawab b² = a² + c² – 2ac cos B = 3² + 8² – cos 60° = 9 + 64 – 48 ½ = 73 -24 = 49 Sehingga b = √49 = 7 CONTOH 10 Soal Diketahui △ABC dengan panjang sisi c = 9, b = 8cm dan a = 7. Tentukan nilai dari sin A. Jawab Dengan menggunakan aturan cosinus. Akan diperoleh rumus sebagai berikut Sehingga dapat kita kerjakan sebagai berikut cos A x 2bc = b² + c² – a² cos A x [ = 9² + 8² – 7² 144 cos A = 81 + 64 – 49 cos A = 96/144 = 2/3 karena yang ditanyakan adalah sin A maka kita akan mencarinya dengan berpatokan pada nilai cos A yang telah kita peroleh, sebagai berikut sin² A = 1 – cos²A = 1 – 2/3² = 1 – 4-/9 = 5/9 sin A = √5/9 = ⅓√5 CONTOH 11 Soal Pada suatu segitiga ABC diketahui panjang sisi a = 3, b = 5 dan c = 7. Tentukanlah nilai tan C. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C 7² = 3² + 5² – cos C 49 = 9 + 25 – 30 cos C 30 cos C = -15 cos C = – 15/30 = -1/2 Sehingga C = 120 Selanjutnya, kita tentukan nilai tan C. tan C = tan 120° = tan 180° – 60° = – tan 60° = – √3 CONTOH 12 Soal Diketahui sebuah segitiga ABC dengan panjang sisi a = 6, b = 8 dan besar sudut C = 60°. Tentukanlah panjang sisi c. Jawab Dengan menggunakan aturan cosinus, akan diperoleh c² = a² + b² – 2ab cos C c² = 6² + 8² – 60° c² = 36 + 64 – 96 . ½ c² = 100 – 48 = 52 Sehingga akan diperoleh sebagai berikut c = √52 = 2√13 CONTOH 13 Soal Pada △ABC diketahui besar sudut C = 60°, panjang sisi c = 12 dan panjang sisi a = 15. Tentukan luas segitiga ABC. Jawab Dengan menggunakan aturan triginimetri pada segitiga, diperoleh sebagai berikut. Luas △ABC = ½ x c x a x sin C = ½ x 12 x 15 x sin 60° = ½ x 12 x 15 x ½√3 = 45√3 CONTOH 14 Soal Pada △ABC diketahui a = 2√7cm, b = 4cm dan c = 6cm. Maka tentukan nilai sin A. Jawab Dengan menggunakan aturan cosinus, diperoleh hasil sebagai berikut cos A x 2bc = b² + c² – a² cos A x = 4² + 6² – 2√7² 48 cos A = 16 + 36 – 28 = 24 cos A =24/28 = ½ maka didapat besar sudut A = 60° Sehingga sin 60° = ½√3 CONTOH 15 Soal Misalkan sebuah segitiga ABC sama sisi memiliki panjang 8, maka Berapakah luas segitiga tersebut. Jawab Kita misalkan bahwa segitiga sama sisi tersebut memiliki besar sudut yang sama yaitu 45° dan semua sisi memiliki panjang yang sama sehingga luasnya didapat seperti ini Luas △ABC = ½ x s x s x sin α = ½ x s x s x sin 45 = ½ x 12 x 12 x ½√2 = 36√2 CONTOH 16 Soal Jika diketahui △ABC memiliki besar sudut A = 65°, B = 55°, panjang sisi b = 6 dan panjang sisi a = 8, maka tentukan luas segitiga tersebut adalah Jawab Karena sin C-nya belum diketahui, maka kita cari dahulu nilai sin C. Besar sudut C = 180° – [65° + 55°] = 60° Sesudah mendapatkan nilai sin C maka selanjutnya kita mengerjakan berdasarkan aturan segitiga pada trigonometri sebagai berikut Luas △ABC = ½ x a x b x sin 60° = ½ x 6 x 8 x ½√3 = 12√3 Demikian cintoh-contoh soalnya. Semoga bermanfaat
Rumusyang tepat untuk cos A cos B - sin A sin B adalah. Rumus perkalian sinus/kosinus/ tangen. Rumus jumlah dan selisih sinus/ kosinus/ tangen. Persamaan Trigonometri. TRIGONOMETRI. Matematika.
Rumus Trigonometri Sinus Kosinus Tangen Selamat datang para pecinta Matematrick. Kali ini kita akan belajar tentang materi favorit saya waktu di sekolah, yaitu Materi matematika bab trigonometri. Inti dari trigonometri adalah mempelajari tentang panjang sisi dan besar sudut dalam segitiga. Munculnya istilah sinus, cosinus dan tangen pun sebenarnya adalah istilah untuk menyatakan perbandingan-perbandingan antar panjang sisi segitiga. Lebih lengkapnya tentang pendahuluan trigonometri bisa anda pelajari di sini Materi matematika trigonometri Berikut ini adalah materi trigonometri lanjutan, sambungan dari materi sebelumnya, yaitu Rumus/Aturan Sinus dan Cosinus A. Rumus Trigonometri Sudut Ganda 1. Rumus Sinus Sudut Ganda Dengan memanfaatkan rumus sin A + B, untuk A = B akan diperoleh sin 2A = sin A + B = sin A cos A + cos A sin A = 2 sin A cos A Sehingga didapat Rumus sin 2A = 2 sin A cos A Untuk lebih jelasnya, perhatikan contoh soal berikut ini. Contoh soal trigonometri dasar Diketahui sin A = 12/13 , di mana A di kuadran II. Dengan menggunakan rumus sudut ganda, hitunglah sin 2A. Penyelesaian b. Rumus Cosinus Sudut Ganda Dengan memanfaatkan rumus cos A + B, untuk A = B akan diperoleh cos 2A = cos A + A = cos A cos A – sin A sin A = cos² A – sin² A ……………..1 atau cos 2A = cos² A – sin² A = cos² A – 1 – cos² A = cos² A – 1 + cos² A = 2 cos² A – 1 ……………..2 atau cos 2A = cos² A – sin² A = 1 – sin² A – sin² A = 1 – 2 sin² A …………3 Dari persamaan 1, 2, dan 3 didapat rumus sebagai berikut cos 2A = cos² A – sin² Acos 2A = 2 cos² A – 1cos 2A = 1 – 2 sin² A contoh soal persamaan trigonometri sederhana Diketahui cos A = – 7/25 , di mana A dikuadran III. Dengan menggunakan rumus sudut ganda, hitunglah nilai cos 2A. Penyelesaian c. Rumus Tangen Sudut Ganda Dengan memanfaatkan rumus tan A + B, untuk A = B akan diperoleh tan 2A = tan A + A = tan A + tan A/1 - tan A = 2 tan A/1 - tan² A Rumus tan 2A = 2 tan A/1 - tan² A Perhatikan contoh soal berikut ini. contoh soal persamaan trigonometri Jika α sudut lancip dan sin α = 4/5 , hitunglah tan 2α. Penyelesaian B. Rumus Perkalian Sinus dan Kosinus 1. Perkalian Cosinus dan Cosinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut cos A + B = cos A cos B – sin A sin B ......... 1 cos A – B = cos A cos B + sin A sin B ......... 2 tambahkan persamaan 1 dan 2 maka akan didapat cos A + B + cos A – B = 2 cos A cos B Rumus 2 cos A cos B = cos A + B + cos A – B Pelajarilah contoh soal berikut untuk lebih memahami rumus perkalian cosinus dan cosinus. Contoh soal perkalian trigonometri Nyatakan 2 cos 75° cos 15° ke dalam bentuk jumlah atau selisih, kemudian tentukan hasilnya. Penyelesaian 2 cos 75° cos 15° = cos 75 + 15° + cos 75 – 15° = cos 90° + cos 60° = 0 + 0,5 = 0,5 2. Perkalian Sinus dan Sinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut cos A + B = cos A cos B – sin A sin B ............ 1 cos A – B = cos A cos B + sin A sin B .............2 Kedua ruas dikurangkan, akan didapat cos A + B – cos A –B = –2 sin A sin B atau 2 sin A sin B = cos A – B – cos A + B Rumus 2 sin A sin B = cos A – B – cos A + B Sekarang, simaklah contoh soal berikut. Contoh soal persamaan trigonometri sederhana Tentukan nilai x dari persamaan trigonometri berikut 2 sin 75 sin 15 = x. Penyelesaian 2 sin 75 sin 15 = cos 75 – 15 – cos 75 + 15 = cos 60 – cos 90 = 0,5 – 0 = 0,5 Jadi nilai x = 0,5. 3. Perkalian Sinus dan Cosinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut. sin A + B = sin A cos B + cos A sin B ............ 1 sin A – B = sin A cos B – cos A sin B ............ 2 dari persamaan 1 dan 2 dijumlahkan akan didapat sin A + B + sin A – B = 2 sin A cos B atau 2 sin A cos B = sin A + B + sin A – B Rumus 2 sin A cos B = sin A + B + sin A – B Perhatikan contoh soal berikut Contoh soal perkalian trigonometri sederhana Nyatakan sin 105° cos 15° ke dalam bentuk jumlah atau selisih sinus, kemudian tentukan hasilnya. Penyelesaian C. Rumus Jumlah dan Selisih pada Sinus dan Kosinus 1. Rumus Penjumlahan Cosinus Berdasarkan rumus perkalian cosinus, diperoleh hubungan penjumlahan dalam cosinus yaitu sebagai berikut. 2 cos A cos B = cos A + B + cos A – B Misalkan Selanjutnya, kedua persamaan itu disubstitusikan. 2 cos A cos B = cos A + B + cos A – B 2 cos 1/2 α + β cos 1/2 α – β = cos α + cos β atau Perhatikan contoh soal berikut. Contoh soal Sederhanakan cos 100° + cos 20°. Penyelesaian cos 100° + cos 20° = 2 cos 1/2100 + 20° cos 1/2100 – 20° = 2 cos 60° cos 40° = 2 ⋅ 1/2 cos 40° = cos 40° 2. Rumus Pengurangan Cosinus Dari rumus 2 sin A sin B = cos A – B – cos A + B, dengan memisalkan A + B = α dan A – B = β, terdapat rumus Perhatikan contoh soal berikut. Contoh soal Sederhanakan cos 35° – cos 25°. Penyelesaian cos 35° – cos 25° = –2 sin 1/2 35 + 25° sin 1/2 35 – 25° = –2 sin 30° sin 5° = –2 ⋅ 1/2 sin 5° = – sin 5° 3. Rumus Penjumlahan dan Pengurangan Sinus Dari rumus 2 sin A cos B = sin A + B + sin A – B, dengan memisalkan A + B = α dan A – B = β, maka didapat rumus Agar lebih memahami tentang penjumlahan dan pengurangan sinus, pelajarilah penggunaannya dalam contoh soal berikut. Contoh soal Sederhanakan sin 315° – sin 15°. Penyelesaian sin 315° – sin 15° = 2⋅ cos 1/2 315 + 15° ⋅ sin 1/2 315 – 15° = 2⋅ cos 165° ⋅ sin 150° = 2⋅ cos 165 ⋅ 1/2 = cos 165° 4. Rumus Penjumlahan dan Pengurangan Tangen Perhatikan penggunaan rumus penjumlahan pada contoh soal berikut. Contoh soal Tentukan nilai tan 165° + tan 75° Penyelesaian Rumusrumus Trigonometri Jumlah dan Selisih Dua Sudut. 1. Rumus Cosinus Jumlah dan Selisih Dua Sudut. Selanjutnya, perhatikanlah gambar di samping. Dari lingkaran yang berpusat di O (0, 0) dan berjari-jari 1 satuan misalnya, cos 2 (A + B) - 2 cos (A + B) + 1 + sin 2 (A + B) = cos 2 B - 2 cos B cos A + cos 2 A +.
Rumus Sin Cos Tan – Apakah Grameds merasa tidak asing dengan istilah “sin-cos-tan” yang merupakan bagian dari ilmu trigonometri? Yap, ilmu trigonometri tidak hanya membahas mengenai konsep dasar dari segitiga saja, tetapi juga dapat berkaitan dengan berbagai ilmu populer, sebut saja ada astronomi, navigasi, hingga geografi. Lalu, bagaimana sih rumus dari sinus cosinus tangen atau yang kerap disebut dengan sin cos tan ini? Apakah antara sinus, cosinus, dan tangen ini berhubungan satu sama lain? Bagaimana pula konsep dari ilmu trigonometri? Yuk simak ulasan berikut ini supaya Grameds memahami akan hal-hal tersebut! Apa Itu Rumus Sin Cos Tan?SinusCosinusTangenTabel Sin Cos TanRumus 1 Sin Cos TanSinusCosRumus 2 Sin Cos Tan KuadranKonsep Trigonometria Perbandingan Trigonometrib Nilai Fungsi TrigonometriRumus-Rumus Sin Cos TanRumus Jumlah Selisih Dua Sudut1. Rumus Untuk Cosinus Jumlah dan Selisih Dua SudutRumus Trigonometri Untuk Sudut Rangkap1. Dengan Menggunakan Rumus sin A+B untuk A=B, maka akan diperolehPerkalian, Penjumlahan, dan Pengurangan Sinus dan Cosinus2. Rumus Penjumlahan dan Pengurangan Sinus dan Cosinus Apa Itu Rumus Sin Cos Tan? Perhatikan gambar segitiga berikut ini! Nah, berdasarkan gambar segitiga tersebut, dapat diketahui rumus trigonometri yang tentu saja mencakup sin cos tan, disertai pula dengan cotangen cot, secan sec, dan cosecan cosec. Rumus Trigonometri Keterangan Sin α = b/c Sisi depan dibagi sisi miring Cos α = a/c Sisi samping dibagi sisi miring Tan α = b/a Sisi depan dibagi sisi samping Cot α = a/b sisi samping dibagi sisi depan kebalikan dari tangen Sec α = c/a Sisi miring dibagi sisi samping kebalikan dari cos Cosec α = c/b Sisi miring dibagi sisi depan kebalikan dari sin Sinus Sinus sin jika dalam ilmu matematika adalah perbandingan sisi segitiga yang berada di depan sudut dengan sisi miring. Namun, dengan catatan bahwa segitiga tersebut adalah segitiga siku-siku atau salah satu sudutnya berukuran 90∘. Cosinus Cosinus Cos jika dalam ilmu matematika adalah perbandingan sisi segitiga yang terletak di sudut dengan sisi miring. Namun, dengan catatan bahwa segitiga tersebut adalah segitiga siku-siku atau salah satu sudutnya berukuran 90∘. Tangen Tangen tan jika dalam ilmu matematika adalah perbandingan sisi segitiga yang terletak di sudut dengan sisi miring. Namun, dengan catatan bahwa segitiga tersebut adalah segitiga siku-siku atau salah satu sudutnya berukuran 90∘. Tabel Sin Cos Tan Rumus 1 Sin Cos Tan Sinus Sin 0° = 0 Sin 30° = 1/2 Sin 45° = 1/2 √2 Sin 60° = 1/2 √3 Sin 90° = 1 Cos Cos 0° = 1 Cos 30° = 1/2 √3 Cos 45° = 1/2 √2 Cos 60° = 1/2 Cos 90° = 0 Tan Tan 0° = 0 Tan 30° = 1/3 √3 Tan 45° = 1 Tan 60° = √3 Tan 90° = ∞ Rumus 2 Sin Cos Tan Kuadran Kuadran II = 180° – α Kuadran III = 180° + α Kuadran IV = 360° – α Untuk 0° < α < 90° Contoh soal! Sin 150° = Sin 180° – 30° = Sin 30° = 1/2 Cos 120° = Cos 180° – 60° = – Cos 60° = -½ Tan 315° = Tan 360° – 45° = – Tan 45° = -1 Konsep Trigonometri Istilah “trigonometri” ini berasal dari Bahasa Yunani, yakni trigono’ yang berarti segitiga dan metri’ yang berarti ilmu ukur. Jadi, dapat disimpulkan bahwa trigonometri adalah ilmu dalam matematika untuk mengukur segitiga. Dasar dari ilmu trigonometri ini adalah kesebangunan siku-siku. Bagi beberapa orang, trigonometri memiliki hubungan dengan geometri. Awal keberadaan trigonometri dapat dilihat dari zaman Mesir Kuno, terutama di Babilonia dan peradaban Lembah Indus sejak 3000 tahun yang lalu. Seorang ahli matematika berkebangsaan India, bernama Lagadha menjadi matematikawan yang dikenal telah menggunakan geometri dan trigonometri dalam upaya menghitung astronomi. Hal tersebut terdapat di dalam bukunya Vedanga dan Jyotisha. Dalam ilmu trigonometri terdapat perbandingan trigonometri dan nilai fungsi trigonometri. a Perbandingan Trigonometri Perhatikan gambar segitiga siku-siku berikut ini! Berdasarkan gambar segitiga siku-siku tersebut, dapat diuraikan rumus perbandingan trigonometri-nya, yakni Terhadap 0 Terhadap α Sin 0 = sisi depan/hipotenusa= y/r Sin α= sisi samping/hipotenusa= x/r Cos 0 = sisi samping/hipotenusa= x/r Cos α= sisi depan/hipotenusa= y/r Tan 0 = sisi depan/sisi samping= y/x Tan α= sisi samping/sisi depan= x/y Cot 0 = sisi samping/sisi depan= xy Cot α= sisi depan/sisi samping= y/x Sumber MATEMATIKA Untuk SMA Jilid 1 Kelas X Noormandiri, dkk. 2014. Matematika untuk SMA Jilid 1 Kelas X. Jakarta ERLANGGA. Nah, dari rumus tersebut dapat diperoleh hal-hal berikut 1. Jumlah sudut 0 + α = 90 α = 90° – 0, maka sin α = cos 0 = x/r atau sin 90° – 0 = cos 0 cos α = sin 0 = y/r atau cos 90° – 0 = sin 0 tan α = cot 0 = x/y atau tan 90° – 0 = cot 0 cot α = tan 0 = y/x atau cot 90° – 0 = tan 0 2. sin 0 = y/r atau y = r sin 0 cos 0 = x/r atau x = r cos 0 Dari teorema phytagoras, x² + y² = r², maka r cos 0² + r sin o² = r² r²cos²0 + sin² 0 = r² cos²0 = sin²0 = 1 3. tan 0 = sin 0/cos 0 dan cot 0 = cos 0/sin 0 4. cos²0 = sin²0 = 1 ⇔ 1 + sin²0/cos²0 = 1/cos²0 ⇔ 1 + sin 0/cos 0² = 1/cos 0² ⇔ 1 + tan²0 = sec 0² ⇔ 1 + tan²0 = sec 0² dan cos²0 + sin²0 = 1 ⇔ cos²0/sin²0 + 1 = 1/sin²0 ⇔ sin 0/cos 0² + 1 = csc 0² ⇔ cot²0 + 1 = csc²0 b Nilai Fungsi Trigonometri Berhubung trigonometri ini membahas mengenai segitiga, maka tentunya akan berkaitan dengan sudut istimewa pada bangun datar tersebut. Sudut istimewanya adalah sudut yang memiliki ukuran besar 0°, 30°, 45°, 60°, dan 90°. Untuk menentukan nilai dan fungsi dari trigonometri yang berukuran sudut 30°, 45°, dan 60°, maka kita harus menggunakan konsep geometri. Rumus Jumlah Selisih Dua Sudut 1. Rumus Untuk Cosinus Jumlah dan Selisih Dua Sudut cos A + B = cos A cos B – sin A sin B cos A – B = cos A cos B + sin A sin B 2. Rumus Untuk Sinus Jumlah dan Selisih Dua Sudut sin A + B = sin A cos B + cos A sin B sin A – B = sin A cos B – cos A sin B 3. Rumus Untuk Tangen Jumlah dan Selisih Dua Sudut Rumus Trigonometri Untuk Sudut Rangkap 1. Dengan Menggunakan Rumus sin A+B untuk A=B, maka akan diperoleh sin2A= sin A + B = sin A cos A + cos A sin A = 2 sin A cos A Jadi, sin2A =2 sin A cos A Perkalian, Penjumlahan, dan Pengurangan Sinus dan Cosinus 1. Rumus Perkalian Sinus dan Kosinus 2 sin A sin B = cos A- B – cos A+ B 2 sin A cos B = sin A + B + sin A-B 2 cos A sin B = sin A + B-sin A-B 2 cos A cos B = cos A + B + cos A- B Contoh soal! Tentukan nilai dari 2 cos 75° cos 15° Jawab! 2 cos 75° cos 15° = cos 75 +15° + cos 75 – 15° = cos 90° + cos 60° = 0 + ½ = ½ 2. Rumus Penjumlahan dan Pengurangan Sinus dan Cosinus sin A + sin B = 2sin ½ A+B cos ½ A-B sin A – sin B = 2cos ½ A+B sin ½ A-B cos A + cos B = 2cos ½ A+B cos ½ A-B cos A – cos B = -2sin ½ A+B cos ½ A-B tan A + tan B = 2 sin A+BcosA+B+ cos A-B tan A – tan B = 2 sin A-BcosA+B + cosA-B Contoh soal! Tentukan nilai dari sin 105° + sin 15° Jawab sin 105° + sin 15° = 2 sin ½ 105+15°cos ½ 105-15° = 2 sin ½ 102° cos ½ 90° = sin 60° cos 45° Nah, itulah ulasan mengenai rumus sin cos tan beserta rumus perkalian dan penambahannya. Apakah Grameds telah mengingat tabel sin cos tan tersebut? Baca Juga! Penemu Matematika dan Biografi Lengkapnya Pengertian Rasio dan Pemanfaatannya Pada Matematika serta Akuntansi Memahami Sifat Asosiaotif Dalam Operasi Hitung Matematika Daftar Rumus Matematika yang Paling Sering Dipakai Pengertian, Soal dan Pembahasan, serta Sejarah Dari Limit Tak Hingga Rumus Keliling Persegi Disertai Soal dan Pembahasannya Pengertian, Konsep, dan Sifat Dari Invers Matriks Pengertian dan Langkah Menentukan Simetri Putar Aneka Bangun Datar Pengertian dan Sifat Perkalian Matriks Pengertian Variabel, Konstanta, dan Suku Pengertian, Sifat, Fungsi, dan Rumus Logaritma Cara Menyelesaikan Persamaan dengan Distributif ePerpus adalah layanan perpustakaan digital masa kini yang mengusung konsep B2B. Kami hadir untuk memudahkan dalam mengelola perpustakaan digital Anda. Klien B2B Perpustakaan digital kami meliputi sekolah, universitas, korporat, sampai tempat ibadah." Custom log Akses ke ribuan buku dari penerbit berkualitas Kemudahan dalam mengakses dan mengontrol perpustakaan Anda Tersedia dalam platform Android dan IOS Tersedia fitur admin dashboard untuk melihat laporan analisis Laporan statistik lengkap Aplikasi aman, praktis, dan efisien
Untukmencari panjang BC dapat menggunakan rumus aturan sinus. Panjang BC adalah: b 2 = c 2 - 2ac cos B + a 2 (cos 2 B + sin 2 B) b 2 = c 2 + a 2 - 2ac cos B. Menggunakan analogi yang sama, kemudian diperoleh aturan cosinus untuk segitiga ABC sebagai berikut: a 2 = c 2 + b 2 - 2bc cos A.
- Rumus-Rumus Trigonometri Penjumlahan Sinus Cosinus Tangen Rumus Trigonometri Penjumlahan Dua Sudut 1. Rumus Cosinus Penjumlahan Sudut Perhatikanlah gambar di bawah ini. Dari lingkaran yang berpusat di O0, 0 dan berjari-jari 1 satuan misalnya, Dengan mengingat kembali tentang koordinat Cartesius, maka a. koordinat titik A 1, 0 b. koordinat titik B cos A, sin A c. koordinat titik C {cos A + B, sin A + B} d. koordinat titik D {cos –B, sin –B} atau cos B, –sin B AC = BD maka AC2 + DB2 {cos A + B – 1}2 + {sin A + B – 0}2 = {cos B – cos A}2 + {–sin B – sin A}2 cos2 A + B – 2 cos A + B + 1 + sin2 A + B = cos2 B – 2 cos B cos A + cos2 A + sin2 B + 2 sin B sin A + sin2 A 2 – 2 cos A + B = 2 – 2 cos A cos B + 2 sin A sin B 2 cos A + B = 2 cos A cos B – sin A sin B cos A + B = cos A cos B – sin A sin B Maka didapat Rumus Cosinus Penjumlahan dua sudut cos A + B = cos A cos B – sin A sin B Dengan cara yang sama, maka cos A – B = cos A + –B cos A – B = cos A cos –B – sin A sin –B cos A – B = cos A cos B + sin A sin B Rumus Cosinus Selisih dua sudut cos A – B = cos A cos B + sin A sin B Untuk lebih paham tentang penggunaan rumus cosinus jumlah dan selisih dua sudut, silakan anda pelajari contoh soal berikut. Contoh soal Penjumlahan sudut Diketahui cos A = 5/13 dan sin B = 24/25 , sudut A dan B lancip. Hitunglah cos A + B dan cos A – B. Penyelesaian cos A = 5/13 , maka sin A = 12/13 sin B = 24/25 , maka cos B = 7/25 cos A + B = cos A⋅ cos B – sin A⋅ sin B = 5/13 ⋅ 7/25 – 12/13 ⋅ 24/25 = 35/325 − 288/325 = − 253/325 cos A – B = cos A⋅ cos B + sin A⋅ sin B = 5/13 ⋅ 7/25 + 12/13 ⋅ 24/25 = 35/325 + 288/325 = 323/325 2. Rumus Sinus Penjumlahan Dua Sudut Perhatikan rumus berikut ini. Maka rumus sinus jumlah dua sudut Dengan cara yang sama, maka sin A – B = sin {A + –B} = sin A cos –B + cos A sin –B = sin A cos B – cos A sin B Rumus sinus selisih dua sudut sin A – B = sin A cos B – cos A sin B Perhatikan contoh soal berikut ini untuk memahami tentang penggunaan rumus sinus jumlah dan selisih dua sudut. Contoh soal Diketahui cos A = – 4/5 dan sin B = 5/13 , sudut A dan B tumpul. Hitunglah sin A + B dan sin A – B. Penyelesaian cos A = – 4/5 , maka sin A = 3/5 kuadran II sin B = 5/13 , maka cos B = – 12/13 kuadran II sin A + B = sin A cos B + cos A sin B = 3/5 . –12/13 + –4/5 . 5/13 = –36/65 – 20/65 = – 56/65 sin A – B = sin A cos B – cos A sin B = 3/5 . –12/13 – –4/5 . 5/13 = –36/65 + 20/65 = – 16/65 3. Rumus Tangen Penjumlahan Dua Sudut Rumus tangen jumlah dua sudut Pelajarilah contoh soal berikut agar kamu memahami penggunaan rumus tangen jumlah dan selisih dua sudut. Tanpa menggunakan tabel logaritma atau kalkulator, hitunglah tan 105°. Penyelesaian tan 105° = tan 60 + 45° = tan 60° tan 45° 1 tan60 tan45 Demikianlah postingan tentang rumus penjumlahan trigonometri sinus, cosinus, tangen yang bisa saya bagikan. Silakan dipelajari dan semoga ada manfaatnya. Salam.
a Sin 2A b. Cos 2A c. Tg 2A 4. Nyatakan 2 Sin 75o Cos 15o sebagai rumus jumlah sinus ! 5. Hitunglah penjumlahan trigonometri berikut ! a. Cos 75o + Cos 15o b. Sin 75o + Sin 15o 6. Diketahui Tg A = 4 dan Tg B = 7 , dengan A sudut tumpul dan B sudut lancip. Tentukan 5 24 nilai dari bentuk trigonometri berikut ! a. Cos (A - B) b. Sin (A + B) c
Sum / Difference of Angles Formulas. 1. cosA + B = cos A cos B – sin A sin B 2. cosA – B = cos A cos B + sin A sin B 3. sinA + B = sin A cos B + cos A sin B 4. sinA – B = sin A cos B – cos A sin B 5. tanA + B = [ tan A + tan B ] / [ 1 – tan A tan B] 6. tanA – B = [ tan A – tan B ] / [ 1 + tan A tan B] Sum / Difference of Trigonometric Functions Formulas. 7. sin A + sin B = 2 sin [ A + B / 2 ] cos [ A – B / 2 ] 8. sin A – sin B = 2 cos [ A + B / 2 ] sin [ A – B / 2 ] 9. cos A + cos B = 2 cos [ A + B / 2 ] cos [ A – B / 2 ] 10. cos A – cos B = – 2 sin [ A + B / 2 ] sin [ A – B / 2 ] Product of Trigonometric Functions Formulas. 11. 2 sin A cos B = sin A + B + sin A – B 12. 2 cos A sin B = sin A + B – sin A – B 13. 2 cos A cos B = cos A + B + cos A – B 14. 2 sin A sin B = – cos A + B + cos A – B Multiple Angles Formulas. 15. sin 2A = 2 sin A cos A 16. cos 2A = cos 2 A – sin 2 A = 2 cos 2 A – 1 = 1 – 2 sin 2 A 17. sin 3A = 3 sin A – 4 sin 3 A 18. cos 3A = 4 cos 3 A – 3 cos A Power Reducing Formulas. 19. sin 2 A = 1/2 [ 1 – cos 2A ] 19. cos 2 A = 1/2 [ 1 + cos 2A ]
3R23yc.
  • 1aq018c2ot.pages.dev/68
  • 1aq018c2ot.pages.dev/333
  • 1aq018c2ot.pages.dev/197
  • 1aq018c2ot.pages.dev/123
  • 1aq018c2ot.pages.dev/144
  • 1aq018c2ot.pages.dev/94
  • 1aq018c2ot.pages.dev/150
  • 1aq018c2ot.pages.dev/162
  • 1aq018c2ot.pages.dev/278
  • rumus sin a cos b