Rumusyang tepat untuk cos A cos B - sin A sin B adalah. Rumus perkalian sinus/kosinus/ tangen. Rumus jumlah dan selisih sinus/ kosinus/ tangen. Persamaan Trigonometri. TRIGONOMETRI. Matematika.Rumus Trigonometri Sinus Kosinus Tangen Selamat datang para pecinta Matematrick. Kali ini kita akan belajar tentang materi favorit saya waktu di sekolah, yaitu Materi matematika bab trigonometri. Inti dari trigonometri adalah mempelajari tentang panjang sisi dan besar sudut dalam segitiga. Munculnya istilah sinus, cosinus dan tangen pun sebenarnya adalah istilah untuk menyatakan perbandingan-perbandingan antar panjang sisi segitiga. Lebih lengkapnya tentang pendahuluan trigonometri bisa anda pelajari di sini Materi matematika trigonometri Berikut ini adalah materi trigonometri lanjutan, sambungan dari materi sebelumnya, yaitu Rumus/Aturan Sinus dan Cosinus A. Rumus Trigonometri Sudut Ganda 1. Rumus Sinus Sudut Ganda Dengan memanfaatkan rumus sin A + B, untuk A = B akan diperoleh sin 2A = sin A + B = sin A cos A + cos A sin A = 2 sin A cos A Sehingga didapat Rumus sin 2A = 2 sin A cos A Untuk lebih jelasnya, perhatikan contoh soal berikut ini. Contoh soal trigonometri dasar Diketahui sin A = 12/13 , di mana A di kuadran II. Dengan menggunakan rumus sudut ganda, hitunglah sin 2A. Penyelesaian b. Rumus Cosinus Sudut Ganda Dengan memanfaatkan rumus cos A + B, untuk A = B akan diperoleh cos 2A = cos A + A = cos A cos A – sin A sin A = cos² A – sin² A ……………..1 atau cos 2A = cos² A – sin² A = cos² A – 1 – cos² A = cos² A – 1 + cos² A = 2 cos² A – 1 ……………..2 atau cos 2A = cos² A – sin² A = 1 – sin² A – sin² A = 1 – 2 sin² A …………3 Dari persamaan 1, 2, dan 3 didapat rumus sebagai berikut cos 2A = cos² A – sin² Acos 2A = 2 cos² A – 1cos 2A = 1 – 2 sin² A contoh soal persamaan trigonometri sederhana Diketahui cos A = – 7/25 , di mana A dikuadran III. Dengan menggunakan rumus sudut ganda, hitunglah nilai cos 2A. Penyelesaian c. Rumus Tangen Sudut Ganda Dengan memanfaatkan rumus tan A + B, untuk A = B akan diperoleh tan 2A = tan A + A = tan A + tan A/1 - tan A = 2 tan A/1 - tan² A Rumus tan 2A = 2 tan A/1 - tan² A Perhatikan contoh soal berikut ini. contoh soal persamaan trigonometri Jika α sudut lancip dan sin α = 4/5 , hitunglah tan 2α. Penyelesaian B. Rumus Perkalian Sinus dan Kosinus 1. Perkalian Cosinus dan Cosinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut cos A + B = cos A cos B – sin A sin B ......... 1 cos A – B = cos A cos B + sin A sin B ......... 2 tambahkan persamaan 1 dan 2 maka akan didapat cos A + B + cos A – B = 2 cos A cos B Rumus 2 cos A cos B = cos A + B + cos A – B Pelajarilah contoh soal berikut untuk lebih memahami rumus perkalian cosinus dan cosinus. Contoh soal perkalian trigonometri Nyatakan 2 cos 75° cos 15° ke dalam bentuk jumlah atau selisih, kemudian tentukan hasilnya. Penyelesaian 2 cos 75° cos 15° = cos 75 + 15° + cos 75 – 15° = cos 90° + cos 60° = 0 + 0,5 = 0,5 2. Perkalian Sinus dan Sinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut cos A + B = cos A cos B – sin A sin B ............ 1 cos A – B = cos A cos B + sin A sin B .............2 Kedua ruas dikurangkan, akan didapat cos A + B – cos A –B = –2 sin A sin B atau 2 sin A sin B = cos A – B – cos A + B Rumus 2 sin A sin B = cos A – B – cos A + B Sekarang, simaklah contoh soal berikut. Contoh soal persamaan trigonometri sederhana Tentukan nilai x dari persamaan trigonometri berikut 2 sin 75 sin 15 = x. Penyelesaian 2 sin 75 sin 15 = cos 75 – 15 – cos 75 + 15 = cos 60 – cos 90 = 0,5 – 0 = 0,5 Jadi nilai x = 0,5. 3. Perkalian Sinus dan Cosinus Dari rumus jumlah dan selisih dua sudut, dapat diperoleh rumus sebagai berikut. sin A + B = sin A cos B + cos A sin B ............ 1 sin A – B = sin A cos B – cos A sin B ............ 2 dari persamaan 1 dan 2 dijumlahkan akan didapat sin A + B + sin A – B = 2 sin A cos B atau 2 sin A cos B = sin A + B + sin A – B Rumus 2 sin A cos B = sin A + B + sin A – B Perhatikan contoh soal berikut Contoh soal perkalian trigonometri sederhana Nyatakan sin 105° cos 15° ke dalam bentuk jumlah atau selisih sinus, kemudian tentukan hasilnya. Penyelesaian C. Rumus Jumlah dan Selisih pada Sinus dan Kosinus 1. Rumus Penjumlahan Cosinus Berdasarkan rumus perkalian cosinus, diperoleh hubungan penjumlahan dalam cosinus yaitu sebagai berikut. 2 cos A cos B = cos A + B + cos A – B Misalkan Selanjutnya, kedua persamaan itu disubstitusikan. 2 cos A cos B = cos A + B + cos A – B 2 cos 1/2 α + β cos 1/2 α – β = cos α + cos β atau Perhatikan contoh soal berikut. Contoh soal Sederhanakan cos 100° + cos 20°. Penyelesaian cos 100° + cos 20° = 2 cos 1/2100 + 20° cos 1/2100 – 20° = 2 cos 60° cos 40° = 2 ⋅ 1/2 cos 40° = cos 40° 2. Rumus Pengurangan Cosinus Dari rumus 2 sin A sin B = cos A – B – cos A + B, dengan memisalkan A + B = α dan A – B = β, terdapat rumus Perhatikan contoh soal berikut. Contoh soal Sederhanakan cos 35° – cos 25°. Penyelesaian cos 35° – cos 25° = –2 sin 1/2 35 + 25° sin 1/2 35 – 25° = –2 sin 30° sin 5° = –2 ⋅ 1/2 sin 5° = – sin 5° 3. Rumus Penjumlahan dan Pengurangan Sinus Dari rumus 2 sin A cos B = sin A + B + sin A – B, dengan memisalkan A + B = α dan A – B = β, maka didapat rumus Agar lebih memahami tentang penjumlahan dan pengurangan sinus, pelajarilah penggunaannya dalam contoh soal berikut. Contoh soal Sederhanakan sin 315° – sin 15°. Penyelesaian sin 315° – sin 15° = 2⋅ cos 1/2 315 + 15° ⋅ sin 1/2 315 – 15° = 2⋅ cos 165° ⋅ sin 150° = 2⋅ cos 165 ⋅ 1/2 = cos 165° 4. Rumus Penjumlahan dan Pengurangan Tangen Perhatikan penggunaan rumus penjumlahan pada contoh soal berikut. Contoh soal Tentukan nilai tan 165° + tan 75° Penyelesaian Rumusrumus Trigonometri Jumlah dan Selisih Dua Sudut. 1. Rumus Cosinus Jumlah dan Selisih Dua Sudut. Selanjutnya, perhatikanlah gambar di samping. Dari lingkaran yang berpusat di O (0, 0) dan berjari-jari 1 satuan misalnya, cos 2 (A + B) - 2 cos (A + B) + 1 + sin 2 (A + B) = cos 2 B - 2 cos B cos A + cos 2 A +.
- Rumus-Rumus Trigonometri Penjumlahan Sinus Cosinus Tangen Rumus Trigonometri Penjumlahan Dua Sudut 1. Rumus Cosinus Penjumlahan Sudut Perhatikanlah gambar di bawah ini. Dari lingkaran yang berpusat di O0, 0 dan berjari-jari 1 satuan misalnya, Dengan mengingat kembali tentang koordinat Cartesius, maka a. koordinat titik A 1, 0 b. koordinat titik B cos A, sin A c. koordinat titik C {cos A + B, sin A + B} d. koordinat titik D {cos –B, sin –B} atau cos B, –sin B AC = BD maka AC2 + DB2 {cos A + B – 1}2 + {sin A + B – 0}2 = {cos B – cos A}2 + {–sin B – sin A}2 cos2 A + B – 2 cos A + B + 1 + sin2 A + B = cos2 B – 2 cos B cos A + cos2 A + sin2 B + 2 sin B sin A + sin2 A 2 – 2 cos A + B = 2 – 2 cos A cos B + 2 sin A sin B 2 cos A + B = 2 cos A cos B – sin A sin B cos A + B = cos A cos B – sin A sin B Maka didapat Rumus Cosinus Penjumlahan dua sudut cos A + B = cos A cos B – sin A sin B Dengan cara yang sama, maka cos A – B = cos A + –B cos A – B = cos A cos –B – sin A sin –B cos A – B = cos A cos B + sin A sin B Rumus Cosinus Selisih dua sudut cos A – B = cos A cos B + sin A sin B Untuk lebih paham tentang penggunaan rumus cosinus jumlah dan selisih dua sudut, silakan anda pelajari contoh soal berikut. Contoh soal Penjumlahan sudut Diketahui cos A = 5/13 dan sin B = 24/25 , sudut A dan B lancip. Hitunglah cos A + B dan cos A – B. Penyelesaian cos A = 5/13 , maka sin A = 12/13 sin B = 24/25 , maka cos B = 7/25 cos A + B = cos A⋅ cos B – sin A⋅ sin B = 5/13 ⋅ 7/25 – 12/13 ⋅ 24/25 = 35/325 − 288/325 = − 253/325 cos A – B = cos A⋅ cos B + sin A⋅ sin B = 5/13 ⋅ 7/25 + 12/13 ⋅ 24/25 = 35/325 + 288/325 = 323/325 2. Rumus Sinus Penjumlahan Dua Sudut Perhatikan rumus berikut ini. Maka rumus sinus jumlah dua sudut Dengan cara yang sama, maka sin A – B = sin {A + –B} = sin A cos –B + cos A sin –B = sin A cos B – cos A sin B Rumus sinus selisih dua sudut sin A – B = sin A cos B – cos A sin B Perhatikan contoh soal berikut ini untuk memahami tentang penggunaan rumus sinus jumlah dan selisih dua sudut. Contoh soal Diketahui cos A = – 4/5 dan sin B = 5/13 , sudut A dan B tumpul. Hitunglah sin A + B dan sin A – B. Penyelesaian cos A = – 4/5 , maka sin A = 3/5 kuadran II sin B = 5/13 , maka cos B = – 12/13 kuadran II sin A + B = sin A cos B + cos A sin B = 3/5 . –12/13 + –4/5 . 5/13 = –36/65 – 20/65 = – 56/65 sin A – B = sin A cos B – cos A sin B = 3/5 . –12/13 – –4/5 . 5/13 = –36/65 + 20/65 = – 16/65 3. Rumus Tangen Penjumlahan Dua Sudut Rumus tangen jumlah dua sudut Pelajarilah contoh soal berikut agar kamu memahami penggunaan rumus tangen jumlah dan selisih dua sudut. Tanpa menggunakan tabel logaritma atau kalkulator, hitunglah tan 105°. Penyelesaian tan 105° = tan 60 + 45° = tan 60° tan 45° 1 tan60 tan45 Demikianlah postingan tentang rumus penjumlahan trigonometri sinus, cosinus, tangen yang bisa saya bagikan. Silakan dipelajari dan semoga ada manfaatnya. Salam.a Sin 2A b. Cos 2A c. Tg 2A 4. Nyatakan 2 Sin 75o Cos 15o sebagai rumus jumlah sinus ! 5. Hitunglah penjumlahan trigonometri berikut ! a. Cos 75o + Cos 15o b. Sin 75o + Sin 15o 6. Diketahui Tg A = 4 dan Tg B = 7 , dengan A sudut tumpul dan B sudut lancip. Tentukan 5 24 nilai dari bentuk trigonometri berikut ! a. Cos (A - B) b. Sin (A + B) c
Sum / Difference of Angles Formulas. 1. cosA + B = cos A cos B – sin A sin B 2. cosA – B = cos A cos B + sin A sin B 3. sinA + B = sin A cos B + cos A sin B 4. sinA – B = sin A cos B – cos A sin B 5. tanA + B = [ tan A + tan B ] / [ 1 – tan A tan B] 6. tanA – B = [ tan A – tan B ] / [ 1 + tan A tan B] Sum / Difference of Trigonometric Functions Formulas. 7. sin A + sin B = 2 sin [ A + B / 2 ] cos [ A – B / 2 ] 8. sin A – sin B = 2 cos [ A + B / 2 ] sin [ A – B / 2 ] 9. cos A + cos B = 2 cos [ A + B / 2 ] cos [ A – B / 2 ] 10. cos A – cos B = – 2 sin [ A + B / 2 ] sin [ A – B / 2 ] Product of Trigonometric Functions Formulas. 11. 2 sin A cos B = sin A + B + sin A – B 12. 2 cos A sin B = sin A + B – sin A – B 13. 2 cos A cos B = cos A + B + cos A – B 14. 2 sin A sin B = – cos A + B + cos A – B Multiple Angles Formulas. 15. sin 2A = 2 sin A cos A 16. cos 2A = cos 2 A – sin 2 A = 2 cos 2 A – 1 = 1 – 2 sin 2 A 17. sin 3A = 3 sin A – 4 sin 3 A 18. cos 3A = 4 cos 3 A – 3 cos A Power Reducing Formulas. 19. sin 2 A = 1/2 [ 1 – cos 2A ] 19. cos 2 A = 1/2 [ 1 + cos 2A ]
3R23yc.